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This document was made as a way to study the material from the fall semester differential
geometry qualifying course at Michigan State University, in fall of 2016. It serves as a
companion document to the “Definitions” review sheet for the same class. The main textbook
for the course was Introduction to Smooth Manifolds by John Lee, and this document closely
follows the order of material in that book.
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0 Appendix A: Topology

Theorem 0.1. Let f : X → Y be a continuous map between topological spaces. If K ⊂ X
is compact, then f(K) ⊂ Y is compact.

1 Chapter 1 - Defining manifolds

Theorem 1.1 (Topological Invariance of Dimension). A nonempty n-dimensional topological
manifold cannot be homeomorphic to an m-dimensional manifold unless m = n.

Theorem 1.2. Every topological manifold has a countable basis of precompact open balls.

Theorem 1.3. Let M1, . . . ,Mk be topological manifolds of dimensions n1, . . . , nk respectively.
The product space

∏
iMi is a topological manifold of dimension

∑
i ni. For (pi) ∈

∏
iMi, we

choose charts (Ui, φi) in each Mi with pi ∈ Ui and then the maps

φ1 × . . .× φk :
∏
i

Ui → Rn1+...+nk

given by
(p1, . . . , pk) 7→ (φ1(p1), . . . , φk(pk))

are the coordinate charts.

Theorem 1.4. Every topological manifold is locally compact.

Theorem 1.5. Every topological manifold is paracompact.

Theorem 1.6. A topological manifold has countably many components, each of which is an
open subset and a connected topological manifold.

Theorem 1.7. Every smooth atlas for a manifold M is contained in a unique maximal
smooth atlas.

Theorem 1.8. Two smooth atlases for a manifold M determine the same smooth structure
if and only if their union is a smooth atlas.

Theorem 1.9. Every smooth manifold has a countable basis of regular coordinate balls.

Theorem 1.10. Any open subset U of a manifold M is also a manifold, by forming smooth
charts for U by taking intersections of U with smooth charts for M . (It has the same
dimension provided U is nonempty.)

Theorem 1.11. Let M1, . . . ,Mk be smooth manifolds of dimension n1, . . . , nk respectively.
Then the charts defined for the product manifold are smoothly compatible.

Theorem 1.12 (Smooth Manifold Chart Lemma). Let M be a set and suppose there is a
collection {Uα} of subsets and a collection of maps φα : Uα → Rn so that

1. φα is a bijection with open image in Rn
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2. φα(Uα ∩ Uβ) is open for every α, β

3. If Uα ∩ Uβ 6= ∅, the map φβ ◦ φ−1α is smooth

4. A countable subcollection of Uα is a cover for M

5. For p, q ∈M , either both are contained in some Uα or there are disjoint Uα, Uβ so that
p ∈ Uα and q ∈ Uβ.

Then M has a unique smooth manifold structure such that (Uα, φα) are smooth charts.

2 Chapter 2 - Smooth functions

Theorem 2.1. Let M be a smooth manifold and f : M → R. Then f is smooth if and only
if f̂ is smooth in every smooth chart.

Theorem 2.2. Let M be a smooth manifold. Then C∞(M) is a commutative ring (with
pointwise addition and multiplication).

Theorem 2.3. Smooth maps are continuous.

Theorem 2.4. Let M,N be manifolds and F : M → N be a map. The following are
equivalent:

1. F is smooth.

2. For every p ∈ M , there exist smooth charts (U, φ), (V, ψ) with p ∈ U , F (p) ∈ V such
that U ∩ F−1(V ) is open in M and ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V ))→ ψ(V ) is smooth.

3. F is continuous and there exist smooth atlases {Uα, φα} for M and {Vβ, ψβ} for N
such that ψβ ◦ F ◦ φ−1α is smooth for all α, β.

4. For every p ∈M , there is a neighborhood U such that F |U is smooth.

Theorem 2.5 (Gluing Lemma for Smooth Maps). Let M,N be smooth manifolds, and let
{Uα}α∈A be an open cover for M . Suppose that for each α ∈ A we have a smooth map
Fα : Uα → N such that they agee on overlaps, that is,

Fα|Uα∩Uβ = Fβ|Uα∩Uβ

for all α, β. Then there is a unique smooth map F : M → N such that F |Uα = Fα for all
α ∈ A.

Theorem 2.6. Let M,N be smooth manifolds, and let F : M → N be a map. Then F is
smooth if and only if every coordinate representation of F is smooth.

Theorem 2.7. Constant maps are smooth.

Theorem 2.8. The identity map is smooth.
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Theorem 2.9. Inclusion maps are smooth.

Theorem 2.10. The composition of smooth maps is smooth.

Theorem 2.11. Let M1, . . . ,Mk be smooth manifolds. Let πi :
∏k

j=1Mj → Mi be the

projection (p1, . . . , pk) 7→ pi. A map F = (F1, . . . Fk) : N →
∏k

i=1Mi is smooth if and only
if each Fi = πi ◦ F : N →Mi is smooth.

Theorem 2.12. Let M be a smooth manifold and (U, φ) be a smooth chart. Then φ : U →
φ(U) is a diffeomorphism.

Theorem 2.13. The composition of diffeomorphisms is a diffeomorphism.

Theorem 2.14. Diffeomorphism is an equivalence relation on smooth manifolds.

Theorem 2.15 (Diffeomorphism Invariance of Dimension). Smooth manifolds can only be
diffeomorphic if they have the same dimension, unless one is empty (in which case both are
empty).

Theorem 2.16. Let f : M → Rk. If x ∈ M \ supp(f), then f(x) = 0. Note that we may
have f(y) = 0 for y ∈ supp(f).

Proof. If f(x) 6= 0, then x ∈ supp(f).

Theorem 2.17. Let M be a smooth manifold and X = {Xα}α∈A an open cover. Then there
exists a smooth partition of unity subordinate to X .

Theorem 2.18. Let M be a smooth manifold and A,U be subsets with A ⊂ U and A closed
and U open. Then there exists a smooth bump function for A supported in U .

Theorem 2.19. Let M be a smooth manifold, with A ⊂ M closed and f : A → Rk a
smooth function. Then for any open subset U with A ⊂ U , there exists a smooth function
f̃ : M → Rk such that f̃ |A = f and supp F̃ ⊂ U .

Theorem 2.20. Let M be a smooth manifold. Then there exists a smooth exhaustion func-
tion for M , that is, there exists a smooth function f : M → R such that f−1((−∞, a]) is
compact for all a ∈ R.

Theorem 2.21. Let M be a smooth manifold and K a closed subset of M . Then there is a
smooth nonnegative function f : M → R such that f−1(0) = K.

3 Chapter 3 - Tangent bundle

Theorem 3.1. Let M be a smooth manifold and p ∈M . Then TpM is a vector space (over
R).
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Proof. Let v, w ∈ TpM and a ∈ R. We need to show that v + w ∈ TpM and av ∈ TpM , so
we need to show that v + w and av are derivations at p.

(v + w)(fg) = v(fg) + w(fg) = f(p)vg + g(p)vf + f(p)wg + g(p)wf

= f(p)(vg + wg) + g(p)(vf + wf) = f(p)(v + w)g + g(p)(v + w)f

Thus v + w is a derivation at p.

(av)(fg) = a(v(fg)) = a(f(p)vg + g(p)vf) = f(p)(avg) + g(p)(avf)

= g(p)(av)f + f(p)(av)g

Thus av is a derivation at p.

Theorem 3.2. Let M be a smooth manifold, and let p ∈ M, v ∈ TpM , and f, g ∈ C∞(M).
If f is a constant function, then vf = 0. If f(p) = g(p) = 0, then v(fg) = 0.

Proof. First suppose that f is the constant function f(p) = 1.

vf = v(ff) = f(p)vf + f(p)vf = 2vf =⇒ vf = 0

Then by linearity, if g(p) = c we have vg = v(cf) = c(vf) = c(0) = 0. The other assertion
is obvious.

Theorem 3.3. Let M,N be smooth manifolds, F : M → N be smooth, and p ∈ M . Then
dFp(v) = F∗(v) is a derivation at F (p).

Theorem 3.4. Let M,N,P be smooth manifolds, and F : M → N and G : N → P be
smooth maps, and let p ∈M . Then

1. dFp = F∗ : TpM → TF (p)N is linear.

2. d(G ◦F )p = dGF (p) ◦ dFp : TpM → TG◦F (p)P . In the other notation, (G ◦F )∗ = G∗ ◦F∗

3. d(IdM)p = (IdM)∗ = IdTpM .

4. If F is a diffeomorphism, then dFp = F∗ is an isomorphism, and (F∗)
−1 = (F−1)∗.

Theorem 3.5. Let M be a smooth manifold, p ∈M , and v ∈ TpM . Let f, g ∈ C∞(M) and
suppose there is a neighborhood U of p such that f(x) = g(x) for x ∈ U . Then vf = vg.

Theorem 3.6. Let M be a smooth manifold and U ⊂ M be open. Let ι : U ↪→ M be the
inclusion map. Then for p ∈ U , the differential dιp = ι∗ : TpU → TpM is an isomorphism.

Theorem 3.7. Let M be a smooth n-manifold. Then for p ∈M , TpM is an n-dimensional
vector space (over R).

Theorem 3.8. Let V be a finite-dimensional (real) vector space with its standard smooth
manifold structure. For a ∈ V the map v → Dv|a is a canonical isomorphism from V to
TaV , and for any linear map L : V → W , the diagram commutes:
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V TaV

W TLaW

∼=

L L∗

∼=

Theorem 3.9. Let M1, . . .Mk be smooth manifolds and let πj : (M1 × . . . ×Mk) → Mj be
the projection (p1, . . . pk)→ pj. Then

α : Tp(M1 × . . .×Mk)→ Tp1M1 ⊕ . . .⊕ TpkMk

α(v) = ((π1)∗(v), . . . , (πk)∗(v)) = (d(π1)p(v), . . . , d(πk)p(v))

is an isomorphism.

Theorem 3.10. Let p ∈ Rn. The derivations

∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

form a basis for TpRn.

Theorem 3.11. Let M be a smooth n-manifold and p ∈M . Then TpM is an n-dimensional
(real) vector space, and for any smooth chart (U, φ) = (U, (x1, . . . , xn)) containing p, the
coordinate vectors

∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

form a basis for TpM . Therefore, any v ∈ TpM can be written as

v =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

Furthermore, xj : U → R is a smooth function, so

v(xj) =

(
vi

∂

∂xi

∣∣∣∣
p

)
(xj) = vi

∂xj

∂xi
(p) = vj

Theorem 3.12. Let M,N be smooth manifolds and let F : M → N be a smooth map.
Let (U, φ) be a chart for M with p ∈ U and (V, ψ) be a chart for N with F (p) ∈ V . Let

F̂ = ψ ◦ F ◦ φ−1 be the coordinate representation of F and p̂ = φ(p) be the coordinate
representation of p. Then

F∗

(
∂

∂xi

∣∣∣∣
p

)
=
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

That is, the matrix of the linear map dFp = F∗ is the Jacobian matrix of F at p, ∂F 1

∂x1
(p) . . . ∂F 1

∂xn
(p)

...
. . .

...
∂Fn

∂x1
(p) . . . ∂Fn

∂xn
(p)


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Theorem 3.13 (“Chain Rule” for Coordinate Changes). Let M be a smooth n-manifold
and (U, φ) = (U, xi) and (V, ψ) = (V, yi) be two smooth charts. The change of basis from{

∂
∂xi

∣∣
p

}
to

{
∂
∂yi

∣∣∣
p

}
is given by

∂

∂xi

∣∣∣∣
p

=
n∑
j=1

(
∂yj

∂xi
(p̂)

)
∂

∂yj

∣∣∣∣
p

where p̂ = φ(p). For v ∈ TpM , we can write v in terms of both bases as

v = ai
∂

∂xi

∣∣∣∣
p

= bi
∂

∂yi

∣∣∣∣
p

Then the relationship between ai and bi is given by

bi =
n∑
i=1

(
∂yj

∂xi
(p̂)

)
ai

Theorem 3.14. Let M be a smooth n-manifold. Then TM is a smooth manifold of dimen-
sion 2n.

Theorem 3.15. Let M be a smooth n-manifold such that M can be covered by a single
smooth chart. Then TM is diffeomorphic to M × Rn.

Theorem 3.16. Let M,N be smooth manifolds and F : M → N be smooth. Then dF :
TM → TN is smooth.

Theorem 3.17. Let M,N,P be smooth manifolds and F : M → N,G : N → P be smooth
maps. Then

1. d(G ◦ F ) = dG ◦ dF

2. d(IdM) = IdTM

3. If F is a diffeomorphism, then dF : TM → TN is also a diffeomorphism and (dF )−1 =
d(F−1).

Theorem 3.18. Let M be a smooth manifold and γ : J →M be a smooth curve. Then for
a function f ∈ C∞(M), γ′(t0) acts on f by

γ′(t0)f = dγ

(
d

dt

∣∣∣∣
t0

)
f =

d

dt

∣∣∣∣
t0

(f ◦ γ) = (f ◦ γ′)(t0)

Theorem 3.19. Let M be a smooth manifold and γ : J → M be a smooth curve, and let
t0 ∈ J . Let (U, φ) be a smooth chart containing t0, with φ(p) = (x1(p), . . . xn(p)). Then for
t sufficiently close to t0, we can write γ as

γ(t) = (γ1(t), . . . γn(t))

and then

γ′(t0) =
dγi

dt
(t0)

∂

∂xi

∣∣∣∣
γ(t0)
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Theorem 3.20. Let M be a smooth manifold and p ∈ M , and v ∈ TpM . Then there exists
a curve γ : (−ε, ε)→M with γ(0) = p and γ′(0) = v for some ε > 0.

Theorem 3.21. Let F : M → N be a smooth map and let γ : J → M be a smooth curve.
For t0 ∈ J , the velocity of F ◦ γ : J → N at t0 is

(F ◦ γ)′(t0) = dF (γ′(t0))

Theorem 3.22. Let F : M → N be a smooth map, and p ∈M and v ∈ TpM . Then

dFp(v) = F∗(v) = (F ◦ γ)′(0)

for any smooth curve γ : J →M satisfying 0 ∈ J , γ(0) = p, and γ′(0) = v.

4 Chapter 4 - Submersions and immersions

Theorem 4.1. Let F : M → N . For all p ∈ M , the rank of F at p does not exceed
min(dimM, dimN).

Theorem 4.2. Let F : M → N be a smooth map and p ∈ M . If dFp = F∗ is surjective,
then there is a neighborhood U of p such that F |U is a submersion. Similarly, if dFp = F∗ is
injective, then there is a neighborhood U of p such that F |U is an immersion.

Theorem 4.3. Let M1, . . .Mk be smooth manifolds, and let π : M1 × . . .×Mk →Mi be the
projection (p1, . . . , pk) 7→ pi. Then πi is a smooth submersion.

Theorem 4.4. Let M be a smooth manifold and γ : J → M a smooth curve. Then γ is a
smooth immersion if and only if γ′(t) is never zero.

Theorem 4.5. Let M be a smooth manifold and TM the tangent bundle. Then the standard
projection π : TM →M given by (p, v) 7→ p is a smooth submersion.

Theorem 4.6. A composition of surjective functions is surjective.

Theorem 4.7. A composition of injective functions is injective.

Theorem 4.8. A composition of smooth submersions is a smooth submersion.

Theorem 4.9. A composition of smooth immersions is a smooth immersion.

Theorem 4.10 (Properties of Local Diffeomorphisms).

1. A composition of local diffeomorphisms is a local diffeomorphism.

2. A finite product of local diffeomorphisms is a local diffeomorphism.

3. A bijective local diffeomorphism is a diffeomorphism.

4. A local diffeomorphism is a smooth immersion and a smooth submersion. Conversely,
a map that is a smooth submersion and smooth immersion is a local diffeomorphism.
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5. A smooth immersion between manifolds of equal dimension is a local diffeomorphism.
Likewise for smooth submersions.

Theorem 4.11. Let F : M → N be a smooth map. Then F is a local diffeomorphism
if and only if it is both a smooth immersion and a smooth submersion. Consequently, if
dimM = dimN and F is either a smooth sumbersion or a smooth immersion, then F is a
local diffeomorphism.

Theorem 4.12 (Inverse Function Theorem). Let M,N be smooth manifolds and F : M →
N a smooth map. If p ∈ M such that dFp = F∗ is invertible, then there are connected
neighborhoods U0 of p and V0 of F (p) such that F |U0 : U0 → V0 is a diffeomorphism.

Theorem 4.13 (Rank Theorem). Let M,N be smooth manifolds of dimension m,n respec-
tively and F : M → N a smooth map with constant rank r. Then for p ∈ M there exist
smooth charts (U, φ) for M with p ∈ U and (V, ψ) for N with F (p) ∈ V such that F (U) ⊂ V
and F has a coordinate representation of the form

F̂ (x1, . . . , xr, xr+1, . . . xm) = (x1, . . . , xr, 0, . . . 0)

In particular, if F is a smooth submersion, then

F̂ (x1, . . . xn, xn+1, . . . , xm) = (x1, . . . xn)

and if F is a smooth immersion then

f̂(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

Theorem 4.14. Let F : M → N be a smooth map and suppose M is connected. Then the
following are equivalent:

1. F has constant rank.

2. For p ∈ M , there exist smooth charts (U, φ) and (V, ψ) with p ∈ U , F (p) ∈ V , such

that the coordinate representation F̂ = ψ ◦ F ◦ φ−1 is linear.

Theorem 4.15 (Global Rank Theorem). Let M,N be smooth manifolds such that F : M →
N is a smooth map of constant rank. Then

1. If F is surjective, then it is a smooth submersion.

2. If F is injective, then it is a smooth immersion.

3. If F is bijective, then it is a diffeomorphism.

Theorem 4.16. The composition of smooth embeddings is a smooth embedding.

Theorem 4.17. If M is a smooth manifold and U ⊂ M is an open submanifold, then the
inclusion map is a smooth embedding.
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Theorem 4.18. Let M1, . . . ,Mk be smooth manifolds and pi ∈Mi be points. Then the map
ιj : Mj →

∏
iMi given by

ιj(q) = (p1, . . . , pj−1, q, pj+1, . . . , pk)

is a smooth embedding.

Theorem 4.19. Let M,N be smooth manifolds and F : M → N be an injective smooth
immersion. If any of the following holds, then F is a smooth embedding.

1. F is an open or closed map.

2. F is a proper map.

3. M is compact.

4. M has empty boundary and dimM = dimN .

Theorem 4.20 (Local Embedding Theorem). Let M,N be smooth manifolds and F : M →
N be a smooth map. Then F is a smooth immersion if and only if every p ∈ M has a
neighborhood U ⊂M such that F |U : U → N is a smooth embedding.

Theorem 4.21 (Local Section Theorem). Let M,N be smooth manifolds and π : M → N
a smooth map. Then π is a smooth submersion if and only if every p ∈ M is in the image
of a local section of π.

Theorem 4.22. Let M,N be smooth manifolds and π : M → N a smooth submersion. Then
π is an open map. If π is surjective, then it is a quotient map.

5 Chapter 5 - Critical points of smooth functions

Theorem 5.1. Let M be a smooth manifold. The embedded submanifolds of codimension
zero in M are exactly the open submanifolds.

Theorem 5.2. Let M,N be smooth manifolds, and F : N → M be a smooth embedding.
Let S = F (N). Then with the subspace topology (from M), S is a topological manifold, and
it has a unique smooth structure making it into an embedded submanifold of M with the
property that F is a diffeomorphism between N and F (N).

Theorem 5.3. Let M,N be smooth manifolds and let p ∈ N . Then the slice M ×{p} is an
embedded submanifolds of M ×N , and it is diffeomorphic to M .

Theorem 5.4. Let M,N be smooth manifolds with dimension m,n respectively. Let U ⊂M
be open and f : U → N be a smooth map. Let Γ(f) ⊂M ×N be the graph of f . Then Γ(f)
is an embedded m-dimensional submanifold of M ×N .

Theorem 5.5. Let M be a smooth manifold with or without boundary and S ⊂ M an
embedded submanifold. Then S is properly embedded if and only if it is a closed subset of M .
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Theorem 5.6. Every compact embedded submanifold is properly embedded.

Theorem 5.7. Let M,N be smooth manifolds, where N may have boundary, and let f :
M → N be a smooth map. Then Γ(f) is a properly embedded submanifold of M ×N .

Theorem 5.8 (Local Slice Criterion for Embedded Submanifolds). Let M be a smooth n-
manifold. If S ⊂ M is an embedded k-dimensional submanifold, then S satisfies the local
k-slice condition. Conversely, if S ⊂ M is a subset that satisfies the local k-slice condition,
then S is a topological manifold with the subspace topology and has a smooth structure making
it a k-dimensional embedded submanifold of M .

Theorem 5.9. Let M be a smooth n-manifold with boundary, and give ∂M the subspace
topology. Then ∂M is a topological (n−1)-dimensional submanifold (without boundary), and
it has a unique smooth structure such that it is a properly embedded submanifold of M .

Theorem 5.10 (Constant-Rank Level Set Theorem). Let M,N be smooth manifolds and
let φ : M → N be a smooth map with constant rank r. Then every level set of φ is a properly
embedded submanifold of codimension r in M .

Theorem 5.11 (Submersion Level Set Theorem). Let M,N be smooth manifolds and φ :
M → N be a smooth submersion. Then every level set of φ is a properly embedded subman-
ifold of M , with codimension equal to the dimension of N .

Theorem 5.12. Let M,N be smooth manifolds and φ : M → N a smooth map. Suppose
that dimM < dimN . Then every point in M is a critical point of φ.

Theorem 5.13. Let M,N be smooth manifolds and φ : M → N a smooth submersion. Then
every point in M is a regular point.

Theorem 5.14. Let M,N be smooth manifolds and φ : M → N a smooth map. The sets of
regular points of φ is an open subset of M .

Theorem 5.15 (Regular Level Set Theorem). Every regular level set of a smooth map
between smooth manifolds is a properly embedded submanifold with codimension equal to the
dimension of the codomain.

Theorem 5.16. Let S be a subset of a smooth m-manifold M . Then S is an embedded
k-submanifold of M if and only if every point of S has a neighborhood U ⊂ M such that
U ∩ S is a level set of a smooth submersion φ : U → Rm−k.

Theorem 5.17. Every embedded submanifold is also an immersed submanifold.

Theorem 5.18. Let M be a smooth manifold with or without boundary, and N be a smooth
manifold, and F : M → N an injective smooth immersion. Let S = F (N). Then S has a
unique topology and smooth structure such that it is a smooth immersed submanifold of M
and such that F : N → S is a diffeomorphism.

Theorem 5.19. Let M be a smooth manifold with or without boundary and S ⊂ M an
immersed submanifold. If any of the following holds, then S is an embedded submanifold.
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1. S has codimension zero in M .

2. The inclusion map S ↪→M is proper.

3. S is compact.

Theorem 5.20 (Immersed Submanifolds are Locally Embedded). Let M be a smooth man-
ifold with or without boundary and S ⊂M an immersed submanifold. Then for p ∈ S, there
exists a neighborhood U of p with U ⊂ S such that U is an embedded submanifold of M .

Theorem 5.21. Let M,N be smooth manifolds with or without boundary, and F : M → N
a smooth map, and S ⊂ M an immersed (or embedded) submanifold. Then F |S : S → N is
smooth.

Theorem 5.22. Let M be a smooth manifold without boundary, and S ⊂ M an immersed
submanifold, and F : N → M a smooth map such that f(N) ⊂ S. If F is continuous as a
map from N → S, then F : N → S is smooth.

Theorem 5.23. Let M be a smooth manifold and S ⊂ M an embedded submanifold. Then
every smooth map F : N →M whose image is contained in S is also smooth as a map from
N to S.

Theorem 5.24. Let M be a smooth manifold and S ⊂ M an immersed submanifold, and
f ∈ C∞(S). Then

1. If S is embedded, then there exists a neighborhood U of S in M and a smooth function
f̃ ∈ C∞(U) such that f̃ |S = f .

2. If S is properly embedded, then the neighborhood above can be taken to be all of M .

Theorem 5.25. Let M be a smooth manifold with or without bondary, and S ⊂ M an
immersed (or embedded) submanifold, and p ∈ S. Then for v ∈ TpM , we have v ∈ TpS if
and only if there is a smooth curve γ : J → M whose image is contained in S, where γ is
also smooth as a map into S, such that 0 ∈ J, γ(0) = p, and γ′(0) = v.

Theorem 5.26. Let M be a smooth manifold and S ⊂ M an embedded submanifold, and
p ∈ S. As a subspace of TpM , the tangent space TpS is precisely

TpS = {v ∈ TpM : vf = 0 whenever f ∈ C∞(M) and f |s = 0}

Theorem 5.27. Let M be a smooth n-manifold with boundary, and let p ∈ ∂M and (xi) be
smooth boundary coordinates on a neighborhood of p. Write v ∈ TpM as vi ∂

∂xi

∣∣
p
. Then

v is inward pointing ⇐⇒ vn > 0

v is outward pointing ⇐⇒ vn < 0

v ∈ Tp(∂M) ⇐⇒ vn = 0
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6 Chapter 6 - Sard’s theorem

Theorem 6.1. Let A ⊂ Rn with m(A) = 0 and F : A → Rn be a smooth map. Then
m(F (A)) = 0.

Theorem 6.2. Let F : M → N be a smooth map between smooth manifolds. If A ⊂M has
measure zero, then F (A) ⊂ N has measure zero.

Theorem 6.3 (Sard’s Theorem). Let F : M → N be a smooth map between smooth mani-
folds. The set of critical values of F has measure zero.

Theorem 6.4 (Corollary to Sard’s Theorem). Let F : M → N be a smooth map between
smooth manifolds. If dimM < dimN , then F (M) has measure zero in N .

7 Chapter 7 - Lie groups

Theorem 7.1. If G is a smooth manifold with a group structure such that the map (g, h) 7→
gh−1 is smooth, then G is a Lie group.

Theorem 7.2. Every Lie group homomorphism has constant rank.

Theorem 7.3. A Lie group homomorphism is a Lie group isomorphism if and only if it is
bijective.

Theorem 7.4. Let G be a Lie group and W ⊂ G an open neighborhood of the identity.
Then W generates an open subgroup of G. If W is connected, it generates a connected open
subgroup of G. If G is connected, then W generates G.

Theorem 7.5. Let G be a Lie group and let G0 be the connected component containing the
identity. Then G0 is a normal subgroup of G and it is the only connected open subgroup.
Every connected component of G is diffeomorphic to G0.

Theorem 7.6. Let F : G → H be a Lie group homomorphism. Then kerF is a properly
embedded Lie subgroup of G, with codimension equal to rankF .

Theorem 7.7. Let F : G→ H be an injective Lie group homomorphism. Then imF has a
unique smooth manifold structure such that it is a Lie subgroup of H and F : G → imF is
a Lie group isomorphism.

Theorem 7.8 (Equivariant Rank Theorem). Let G be a Lie group and let M,N be smooth
manifolds such that G acts transitively (and smoothly) on M and N . If F : M → N is a
smooth equivariant map, then F has constant rank.

8 Chapter 8 - Vector fields

Theorem 8.1 (Smoothness Criterion for Vector Fields). Let M be a smooth manifold with
or without boundary and X : M → TM a rough vector field. If (U, xi) is a smooth chart
on M , then the restriction of X to U is smooth if and only if its component functions with
respect to U are smooth.

14



Theorem 8.2 (Extension Lemma for Vector Fields). Let M be a smooth manifold with or
without boundary and let A ⊂ M be a closed subset. Suppose X is a smooth vector field on
A. If U is an open subset containing A, then there is a smooth global vector field X̃ on M
such that X̃|A = X and supp X̃ ⊂ U .

Theorem 8.3. Let M be a smooth manifold with or without boundary and let X : M → TM
be a rough vector field. The following are equivalent:

1. X is smooth.

2. For every f ∈ C∞(M), the function Xf is smooth.

3. For every open subset U ⊂ M and every f ∈ C∞(M), the function Xf is smooth on
U .

Theorem 8.4. A map D : C∞(M)→ C∞(M) is a derivation if and only if it is of the form
Df = Xf for a smooth vector field X ∈ X(M).

Theorem 8.5. Let F : M → N be a smooth map and X ∈ X(M) and Y ∈ X(N). Then
X and Y are F -related if and only if for every smooth real-valued function f defined on an
open subset of N we have

X(f ◦ F ) = (Y f) ◦ F

Theorem 8.6. Let F : M → N be a diffeomorphism. Then for every X ∈ X(M), there is
a unique smooth vector field on N that is F -related to X.

Theorem 8.7 (Coordinate Formula for Lie Bracket of Vector Fields). Let X, Y ∈ X(M),
and let (U, xi be a smooth chart for M . We can write X = X i ∂

∂xi
and Y = Y i ∂

∂xi
on U .

Then the coordinate expression for [X, Y ] is given by

[X, Y ] =

(
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
= (XY j − Y Xj)

∂

∂xj

Theorem 8.8. Let M be a smooth manifold and (U, xi) be local coordinates. Then[
∂

∂xi
,
∂

∂xj

]
= 0

Theorem 8.9 (Properties of the Lie Bracket). The Lie bracket of vector fields is bilinear,
antisymmetric, and satisfies the Jacobi identity. For f, g ∈ C∞(M),

[fX, gY ] = fg[X, Y ] + (fXg)Y − (gY f)X

Theorem 8.10. Let F : M → N be a smooth map, and let X1, X2 ∈ X(M) and Y1, Y2 ∈
X(N) such that X1 is F -related to Y1 and X2 is F -related to Y2. Then [X1, X2] is F -related
to [Y1, Y2].

Theorem 8.11. Let F : M → N be a diffeomorphism and X1, X2 ∈ X(M). Then

F∗[X1, X2] = [F∗X1, F∗X2]

15



Theorem 8.12. Let G be a Lie group. The set of left-invariant smooth vector fields on G is
a Lie algebra under the above bracket. That is, it is a vector space and closed under brackets.

Theorem 8.13. Let G be a Lie group. Define ε : Lie(G)→ TeG by ε(X) = Xe. Then ε is a
vector space isomorphism. Thus dim Lie(G) = dimG.

Theorem 8.14. Every Lie group is parallelizable.

9 Chapter 9 - Flows

Theorem 9.1. Let V be a smooth vector field on a smooth manifold M . For p ∈ M , there
exists ε > 0 and a smooth curve γ : (−ε, ε) → M so that γ is an integral curve of V , with
γ(0) = p.

Theorem 9.2. Let F : M → N be a smooth map and X ∈ X(M) and Y ∈ X(N). Then
X and Y are F -related if and only if F maps integral curves of X to integral curves of Y .
That is, if γ is an integral curve of X, then F ◦ γ is an integral curve of Y .

Theorem 9.3. Let θ : R × M → M be a smooth global flow on M . The infinitesimal
generator of θ is a smooth vector field on M , and each curve θp is an integral curve of V .

Theorem 9.4. Let θ : D → M be a smooth flow. The infinitesimal generator of θ is a
smooth vector field and the curves θp are integral curves of V .

Theorem 9.5 (Fundamental Theorem of Flows). Let V be a smooth vector field on M .
There is a unique smooth maximal flow θ : D →M whose infinitesimal generator is V . For
this flow, θp is a maximal integral curve of V .

Theorem 9.6. Let F : M → N be a smooth map and X ∈ X(M) and Y ∈ X(N). Let θ be
the flow of X and η the flow of Y . If X and Y are F -related, then the diagram commutes.

Mt
F−−−→ Nt

θt

y ηt

y
M−t

F−−−→ N−t

Theorem 9.7 (Diffeomorphism Invariance of Flows). Let F : M → N be a diffeomorphism.
If X ∈ X(M) and θ is the flow of X, then the flow of F∗X is ηt = F ◦ θt ◦ F−1.

Theorem 9.8. Let V be a smooth vector field on M . Suppose there exists ε > 0 such that
for every p ∈M , the domain of θp contains (−ε, ε). Then V is complete.

Theorem 9.9. Every compactly supported smooth vector field is complete.

Theorem 9.10. On a compact manifold, every smooth vector field is complete.

Theorem 9.11. Every left-invariant vector field on a Lie group is complete.
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Theorem 9.12. Let V be a smooth vector field on M and let θ : D → M be the flow of V .
If p ∈M is a regular point, then θp : Dp →M is a smooth immersion.

Theorem 9.13. Let M be a smooth manifold and V,W ∈ X(M). The following are equiv-
alent: V and W commute, V is invariant under the flow of W , and W is invariant under
the flow of V .

Theorem 9.14. Let M be a smooth manifold, and let V ∈ X(M). A smooth covariant
tensor field A is invariant under the flow of V if and only if LVA = 0.

10 Chapter 10 - Vector bundles

Theorem 10.1. Let E be a smooth vector bundle over M . The projection map π : E →M
is a smooth submersion.

Theorem 10.2. The tangent bundle is a vector bundle.

Theorem 10.3. Let π : E → M be a smooth vector bundle of rank k over M . Suppose
φ : π−1(U)→ U×Rk and ψ : π−1(V )→ V ×Rk are local trivializations such that U ∩V 6= ∅.
Then there is a smooth function τ : U ∩ V → GL(k,R) such that

φ ◦ ψ−1(p, v) = (p, τ(p)v)

Such a map τ is called a transition function.

Theorem 10.4. A vector field is a global section of the tangent bundle.

11 Chapter 11 - Differential 1-forms

Theorem 11.1. Let V be a finite-dimensional vector space. If (E1, . . . , En) is a basis of V ,
then define εi : V → R by εi(Ej) = δji . Then (ε1, . . . , εn) is a basis for V ∗, called the dual
basis.

Theorem 11.2. The assignment that sends a vector space to its dual space and a linear map
to its dual map is a contravariant functor from the category of real vector spaces to itself.

Theorem 11.3. Let V be a finite-dimensional vector space and define ξ : V → V ∗∗ by
defining ξ(v) : V ∗ → R to be the map ξ(v)(ω) = ω(v). Then ξ is a vector space isomorphism.

Theorem 11.4. If (U, xi) is a smooth chart for a manifold, then
(

∂
∂xi

∣∣
p

)
is a basis for TpM ,

and its dual basis is (dxi|p).

Theorem 11.5. Let F ∈ C∞(M). Then df = 0 if and only if f is constant on each
component of M .

Theorem 11.6 (Pullback Commutes with d). Let F : M → N be a smooth map, and let
u ∈ C∞(M) and ω be a 1-form on N . Then

F ∗(du) = d(u ◦ F )
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Theorem 11.7. Let F : M → N be a smooth map and let ω be a 1-form on N . Let (U, xi)
a smooth chart on M and (V, yj) be a smooth chart on N with F (U) ⊂ V . Then we can
write ω as ω = ωjdy

j, and

F ∗ω = (ωj ◦ F )d(yj ◦ F ) = (ωj ◦ F )dF j

12 Chapter 12 - Differential k-forms

13 Chapter 13 - Exterior derivative

14 Chapter 14 - Orientation

Theorem 14.1 (Properties of Elementary k-covectors). Let (Ei) be a basis for V and (εi)
the dual basis, and I a multi-index. If I has a repeated index, εI = 0. If J = Iσ for some
σ ∈ Sk, then εI = (sgnσ)εJ . Also,

εI(Ej1 , . . . , Ejk) = δIJ

Theorem 14.2. Let V be an n-dimensional vector space. If (εi) is a basis for V ∗, then the
collection

{εI : I is an increasing multi-index of length k}
is a basis for Λk(V ∗).

Theorem 14.3. Let I, J be multi-indices. Then εI ∧ εJ = εIJ .

Theorem 14.4 (Properties of Wedge Product). The wedge product is bilinear, associative,
and anti-commutative. The anticommutative property says that

ω ∧ η = (−1)kl(η ∧ ω)

where k, l are the respective degrees of ω, η.

Theorem 14.5. Let V be an n-dimensional vector space. If (εi) is a basis for V ∗, then

εi1 ∧ . . . ∧ εik = εI

As a result,
ω1 ∧ . . . ∧ ωk(v1, . . . , vk) = det(ωj(vi))

Theorem 14.6 (Properties of Interior Multiplication). Let V be a finite-dimensional vector
space and v ∈ V . Then iv ◦ iv = 0, and for ω ∈ Λk(V ∗) and η ∈ Λl(V ∗) we have

iv(ω ∧ η) = (ivω) ∧ η + (−1)kω ∧ (ivη) = (v ⌟ ω) ∧ η + (−1)kω ∧ (v ⌟ η)

More generally,

v ⌟ (ω1 ∧ . . . ∧ ωk) =
k∑
i=1

(−1)(i−1)ωi(v)ω1 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωk

18



Theorem 14.7. Let F : M → N be a smooth map. Then F ∗(ω ∧ η) = F ∗ω ∧ F ∗η. In a
smooth chart (V, yi) for N , we have

F ∗

(
′∑
I

ωIdy
i1 ∧ . . . ∧ dyik

)
=

′∑
I

(ωI ◦ F )d(yi1 ◦ F ) ∧ . . . ∧ d(yik ◦ F )

Theorem 14.8 (Pullback for Top Degree Forms). Let F : M → N be smooth. Let (U, xi)
be a chart for M and (V, yi) be a chart for N , and f ∈ C∞(V ). Then on U ∩ F−1(V ), we
have

F ∗(udy1 ∧ . . . ∧ dyn) = (u ◦ F )(det J(F ))dx1 ∧ . . . ∧ dxn

(Note that J(F ) is the Jacobian of F in these coordinates.)

Theorem 14.9. If (U, xi) and (V, yj) are overlapping charts on M , then on U ∩ V we have

dy1 ∧ . . . ∧ dyn = det

(
dyj

dxi

)
dx1 ∧ . . . ∧ dxn

Theorem 14.10. The exterior derivative exists and is unique.

Theorem 14.11. Let F : M → N be a smooth map. For each k, the map F ∗ : Ωk(N) →
Ωk(M) commutes with d. That is,

F ∗(dω) = d(F ∗(ω)

Theorem 14.12. Every exact form is closed.

Theorem 14.13. Let M be a smooth manifold and V ∈ X (M). A smooth covariant tensor
field A is invariant under the flow of V if and only if LVA = 0.

Theorem 14.14 (Cartan’s Magic Formula). Let M be a smooth manifold and V a smooth
vector field on M , and ω a differential form on M . Then

LV ω = V ⌟ (dω) + d(V ⌟ ω)

15 Chapter 15 - Integration on manifolds

Theorem 15.1. Let M be a smooth n-manifold. Any nonvanishing n-form on M determines
a unique orientation on M . Conversely, if M is oriented, there is a smooth nonvanish n-form
on M that determines that orientation.

Theorem 15.2. Let M be an oriented smooth manifold and D ⊂M a smooth codimesion-0
(immersed) submanifold. The orientation on M restricts to an orientation on D. If ω is an
orientation form for M , then ι∗ω is an orientation form for D. (ι : D →M is the inclusion
map.)

Theorem 15.3. Let F : M → N be a local diffeomorphism and N be oriented. Then M has
a unique orientation such that F is orientation preserving.

Theorem 15.4. Every parallelizable manifold is orientable.

Theorem 15.5. Let M be an oriented smooth n-manifold with boundary. The ∂M is ori-
entable, and all outward-pointing vector fields along ∂M determine the same orientation on
∂M .
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16 Chapter 16 - de Rham cohomology

Theorem 16.1. Let U and V be open sets in Rn and let G : U → V be an orientation-
preserving diffeomorphism. If ω is a compactly supported n-form on V , then∫

U

G∗ω =

∫
V

ω

If G is orientation reversing instead of orientation preserving, then∫
U

G∗ω = −
∫
V

ω

Theorem 16.2 (Properties of Integrals). Let M,N be non-empty oriented smooth n-manifold
and ω, η compactly supported n-forms on M , and let a, b ∈ R. Denote M with opposite ori-
entation by −M . Then ∫

M

aω + bη = a

∫
M

ω + b

∫
M

η∫
−M

= −
∫
M

ω

ω is positively oriented =⇒
∫
M

ω > 0

Theorem 16.3. If F : M → N is an orientation preserving diffeomorphism, then∫
M

ω =

∫
N

F ∗ω

If F is orientation reversing instead, then∫
M

ω = −
∫
N

F ∗ω

Theorem 16.4. Let M be an oriented smooth n-manifold and ω a compactly supported n-
form on M . Suppose D1, . . . , Dk are open domains of integration in Rn and we have smooth
maps Fi : Di →M satisfying

1. Fi restricts to an orientation preserving diffeomorphism from Di to an open subset
Wi ⊂M .

2. Wi ∩Wj = ∅ for i 6= j.

3. suppω ⊂ W 1 ∪ . . . ∪W k

Then ∫
M

ω =
k∑
i=1

∫
Di

F ∗ω
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The above theorem says, in an overly complicated way, that if we parametrize our manifold
M by finitely many charts that don’t overlap, then we can integrate ω over M by integrating
the pullback of ω on each chart. All the technicalities of the theorem say that you don’t
actually need to parametrize the whole manifold - you just need to parametrize the part
where ω is nonzero, and you can throw away sets of measure zero, because they don’t affect
integration.

Theorem 16.5 (Stokes’s Theorem). Let M be an oriented smooth n-manifold with boundary,
and let ω be a compactly supported smooth (n− 1) form on M . Then∫

M

dω =

∫
∂M

ω

The ω on the RHS actually means ι∗ω where ι : ∂M →M is the inclusion. If ∂M = ∅, then
the RHS is zero.

17 Chapter 17 - Poincare duality

Theorem 17.1. Diffeomorphic smooth manifolds have isomorphic de Rhan cohomology
groups.

Theorem 17.2. Let M be a smooth manifold, written as a disjoint union of its connected
components, M =

⊔
iMi. Then Hn(M) ∼=

∏
iH

n(Mi).

The above theorem means that it is trivial to compute the de Rham cohomology of a disjoint
union if we know the cohomologies of the pieces.

Theorem 17.3. Let M be connected. Then H0(M) ∼= R.

Theorem 17.4. Let M and N are homotopy equivalent manifolds, then Hn(M) ∼= Hn(N)
for all n.

Theorem 17.5. If M is a contractible smooth manifold, then Hn(M) = 0 for n ≥ 1.

Theorem 17.6 (Poincare Lemma). If U is a star-shaped open subset of Rn, then Hn(U) = 0
for p ≥ 1.

Theorem 17.7. The de Rham cohomology of Rk is given by

Hn(Rk) =

{
R n = 1

0 n ≥ 1

Theorem 17.8. Let M be a connected smooth manifold. Then φ : H1(M)→ Hom(π1(M),R)
is well-defined and injective.

Theorem 17.9. If M is a connected smooth manifold with finite fundamental group, then
H1(M) = 0.
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Theorem 17.10. If M is a compact connected oriented smooth n-manifold, then Hn(M) ∼=
R.

Theorem 17.11. Let f : M → N be a smooth map between smooth manifolds. If dimM <
dimN , then f is not surjective.

Proof. Every point in M is critical, since rank dfp < dimM < dimTf(p)N . Thus f(M) has
measure zero by Sard’s Theorem. Hence f(M) 6= N .
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